Telegram Group & Telegram Channel
Meta-Learning Bidirectional Update Rules [2021] - обучаем бэкпроп

На мой взгляд, за мета-обучением будущее, но обучаемый алгоритм не должен содержать много параметров, чтобы не переобучиться на мета-трейне. На днях наткнулся на данную работу, предлагающую свой вариант мета-параметризации.

Рассмотрим полносвязную нейросеть в такой перспективе: у каждого нейрона есть 2 "канала" - для forward и backward. Мы сначала совершаем цепочку расчётов по первому каналу нейрона слева направо, далее считаем градиент ошибки по последнему слою, и по второму каналу совершаем цепочку расчётов справа налево. Это будет градиент, который мы потом с некоторым learning rate применим к весам. Это на картинке слева. Обобщаем это следующим образом:

1) Теперь у каждого нейрона K "каналов", причём они не независимы, и суммируются все со всеми и в forward, и в backward, и даже в weights update. Но мы обучаем несколько матриц K x K, используемые как веса при суммировании из каждого в каждый канал во всех этапах.

2) Добавим мета-параметры, похожие на momentum и learning rate

3) На вход первому слою будем подавать как обычно input, а последнему просто правильный ответ, чтобы алгоритм сам обучился тому, как обновлять параметры

Теперь эти ~O(K^2) параметров можно обучать, оптимизируя производительность на валидационном датасете. Обучать их можно как генетикой, так и напрямую градиентным спуском, если модель обучать не так много шагов.

Если подумать, схема похожа на ту же VSML, с разницей в том, что здесь авторы строят свою модель именно как обобщение схемы forward-backward, из-за чего возникает много лишней нотации и слегка переусложнённых конструкций. Авторы указывают, что в их работе нет RNN, но это различие скорее в интерпретации происходящего. Глобальная логика та же - обучаемые небольшие матрицы регулируют пробрасывание информации по архитектуре, а также обновление содержащейся в ней памяти, именуемой весами.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/177
Create:
Last Update:

Meta-Learning Bidirectional Update Rules [2021] - обучаем бэкпроп

На мой взгляд, за мета-обучением будущее, но обучаемый алгоритм не должен содержать много параметров, чтобы не переобучиться на мета-трейне. На днях наткнулся на данную работу, предлагающую свой вариант мета-параметризации.

Рассмотрим полносвязную нейросеть в такой перспективе: у каждого нейрона есть 2 "канала" - для forward и backward. Мы сначала совершаем цепочку расчётов по первому каналу нейрона слева направо, далее считаем градиент ошибки по последнему слою, и по второму каналу совершаем цепочку расчётов справа налево. Это будет градиент, который мы потом с некоторым learning rate применим к весам. Это на картинке слева. Обобщаем это следующим образом:

1) Теперь у каждого нейрона K "каналов", причём они не независимы, и суммируются все со всеми и в forward, и в backward, и даже в weights update. Но мы обучаем несколько матриц K x K, используемые как веса при суммировании из каждого в каждый канал во всех этапах.

2) Добавим мета-параметры, похожие на momentum и learning rate

3) На вход первому слою будем подавать как обычно input, а последнему просто правильный ответ, чтобы алгоритм сам обучился тому, как обновлять параметры

Теперь эти ~O(K^2) параметров можно обучать, оптимизируя производительность на валидационном датасете. Обучать их можно как генетикой, так и напрямую градиентным спуском, если модель обучать не так много шагов.

Если подумать, схема похожа на ту же VSML, с разницей в том, что здесь авторы строят свою модель именно как обобщение схемы forward-backward, из-за чего возникает много лишней нотации и слегка переусложнённых конструкций. Авторы указывают, что в их работе нет RNN, но это различие скорее в интерпретации происходящего. Глобальная логика та же - обучаемые небольшие матрицы регулируют пробрасывание информации по архитектуре, а также обновление содержащейся в ней памяти, именуемой весами.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/177

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Knowledge Accumulator from it


Telegram Knowledge Accumulator
FROM USA